Uncalibrated Visual Servoing

Ezio MALIS

Institut National de Recherche en Informatique et Automatique
Sophia-Antipolis, France
http://www-sop.inria.fr/icare/personnel/malis
Topics

- Hybrid Visual Servoing;
- Invariant Visual Servoing;
Topics

- Hybrid Visual Servoing;
- Invariant Visual Servoing;
Introduction

- Position-based visual servoing:
 - 3D model of the object
 - Possible getting out of the image
 (3D Cartesian control)
 - Coarse calibration sufficient
 (but unknown robustness domain)

- Image-based visual servoing:
 - Depth estimation or approximation
 - Potential problems of convergence
 - Coarse calibration sufficient
 (but unknown robustness domain)
21/2D visual servoing

- Control in the 3D space: rotation axis \(u \) and angle \(\theta \)
- Control in the 2D space: coordinate of an image point \((u, v)\)
- Control of the relative depth: \(\log(Z/Z) \)
- Task function \(e = (e_\nu, e_\omega) \):
 \[
 e_\nu = (u - u, v - v, \log(Z/Z)) \quad \text{and} \quad e_\omega = \theta u
 \]
Epipolar Geometry

Reference points \(p \) with camera \(K \)

Fundamental equation:

\[
Z_p = G_1(p + 1Z_c) = K_1R > K_c = K_1R > K_t
\]

Why is epipolar geometry useful?

If \(R = I \) and \(K = K_0 \):

\[
Z_p = p + 1Z_c
\]

If \(K = K_0 \) then one can estimate \(R \).
Reference points p with camera K

Current points p with camera K

Fundamental equation:

$$Z_p = G_1 (p + 1 Z_c)$$

$$G_1 = K^{-1} R > K_c = K^{-1} t$$

Why is epipolar geometry useful?

If $R = I$ and $K = K$:

$$Z_p = p + 1 Z_c$$

If $K = K$ then one can estimate R.

EURON Summer School on Visual servoing
Epipolar Geometry

- Reference points \(p \) with camera \(K \)
- Current points \(p \) with camera \(K \)
- Rotation \(R \) and translation \(t \)

Fundamental equation:

\[
Z_p = G_1 (p + Z_c)
\]

\[
G_1 = K^{-1} R > K c = K^{-1} t
\]

Why is epipolar geometry useful?

If \(R = I \) and \(K = K' \):

\[
Z_p = p + Z_c
\]

If \(K = K' \) then one can estimate \(R \).
Reference points \(p \) with camera \(K \)

Current points \(p \) with camera \(K \)

Rotation \(R \) and translation \(t \)

Fundamental equation:
\[
\frac{Z}{Z} p = G_{\infty}(p + \frac{1}{Z}c)
\]
Epipolar Geometry

- Reference points \(p \) with camera \(K \)
- Current points \(p \) with camera \(K \)
- Rotation \(R \) and translation \(t \)
- Fundamental equation:
 \[
 \frac{Z}{Z} \mathbf{p} = G_\infty (\mathbf{p} + \frac{1}{Z} \mathbf{c})
 \]
 \[
 G_\infty = K^{-1} R^\top K
 \]

Why is epipolar geometry useful?

If \(R = I \) and \(K = K \), then one can estimate \(R \).
Epipolar Geometry

- Reference points p with camera K
- Current points p with camera K
- Rotation R and translation t
- Fundamental equation:
 \[\frac{Z}{Z} p = G_\infty (p + \frac{1}{Z} c) \]
 \[G_\infty = K^{-1} R^\top K \]
 \[c = -K^{-1} t \]

Why is epipolar geometry useful?
If $R = I$ and $K = K$:
\[Z p = p + Z c \]

If $K = K$ then one can estimate R.
Epipolar Geometry

- Reference points \(p \) with camera \(K \)
- Current points \(p \) with camera \(K \)
- Rotation \(R \) and translation \(t \)
- Fundamental equation:
 \[
 \frac{Z}{Z} p = G_{\infty} (p + \frac{1}{Z} c)
 \]
 \[
 G_{\infty} = K^{-1} R^T K
 \]
 \[
 c = -K^{-1} t
 \]
- Why is epipolar geometry useful?
Epipolar Geometry

- Reference points p with camera K
- Current points p with camera K
- Rotation R and translation t
- Fundamental equation:
 \[\frac{Z}{Z} p = G_\infty (p + \frac{1}{Z} c) \]
 \[G_\infty = K^{-1} R^\top K \]
 \[c = -K^{-1} t \]

Why is epipolar geometry useful?
- If $R = I$ and $K = K$:
 \[\frac{Z}{Z} p = p + \frac{1}{Z} c \]
Epipolar Geometry

- Reference points p with camera K
- Current points p with camera K
- Rotation R and translation t
- Fundamental equation:
 \[\frac{Z}{Z} p = G_{\infty}(p + \frac{1}{Z} c) \]
 \[G_{\infty} = K^{-1} R^T K \]
 \[c = -K^{-1} t \]
- Why is epipolar geometry useful?
 - If $R = I$ and $K = K$:
 \[\frac{Z}{Z} p = p + \frac{1}{Z} c \]
 - If $K = K$ then one can estimate R.

EURON Summer School on Visual servoing
Interaction matrix

- Non-singular block triangular matrix:

\[
\frac{de}{dt} = \begin{bmatrix} e_v \\ e_\omega \end{bmatrix} = \begin{bmatrix} L_v & L_{(v, \omega)} \\ 0 & L_\omega \end{bmatrix} \begin{bmatrix} M_v & M_{(v, \omega)} \\ 0 & M_\omega \end{bmatrix} v
\]

- \(L \) depends on \(Z \) and \(K \) (\(\det(L) = 1/(Z^3 \sin^2(\theta/2)) \)):

\[
L_v = L_v(Z, K), \quad L_{(v, \omega)} = L_{(v, \omega)}(K)
\]

\[
L_\omega = I - \frac{\theta}{2} [u]_x + \left(1 - \frac{\sin(\theta)}{\sin^2(\theta/2)} \right) [u]^2
\]

- \(M \) depends on \(^cR_e \) and \(^cT_e \) (\(\det(M) = 1 \)):

\[
M_v = ^cR_e, \quad M_{(v, \omega)} = [^cT_e]_x ^cR_e, \quad M_\omega = ^cR_e
\]
Control law

- The task function should decrease exponentially:

\[\dot{e} = -\lambda e \]

- Control law:

\[
v = -\lambda \begin{bmatrix}
\widehat{M}_v^{-1} & -\widehat{M}_v^{-1}\widehat{M}_{(v,\omega)}\widehat{M}_\omega^{-1} \\
0 & \widehat{M}_\omega^{-1}
\end{bmatrix}
\begin{bmatrix}
\widehat{L}_v^{-1} & -\widehat{L}_v^{-1}\widehat{L}_{(v,\omega)}\widehat{L}_\omega^{-1} \\
0 & \widehat{L}_\omega^{-1}
\end{bmatrix} \widehat{e}
\]

- In practice, only estimations or approximations;
- Robustness with respect to calibration errors.
Stability Analysis

Closed-loop differential system:

\[\dot{e} = -\lambda Q(e) e \]

Necessary and sufficient condition for the local stability:

\[\text{real}(\text{eig}(Q(0))) > 0 \]

Sufficient condition for the global stability:

\[Q(e) > 0 \]

Known robustness domain with respect to:
- errors on \(Z \) and \(K \) (\(\hat{M} = M \))
- errors on \(Z, K, cR_e, c_t_e \)
Experimental Results (I)

Coarsely Calibrated Camera

Reference image

Initial image

Error $\|p - p\|$
Experimental Results (II)

Uncalibrated Camera

Reference image

Initial image

Trajectory

Error $\|p - p\|$

Control law ν

Translation e_ν

Control law ω

Rotation e_ω
Topics

- Hybrid Visual Servoing;
- Invariant Visual Servoing;
Introduction

- Uncalibrated eye-in-hand visual servoing:
 - unknown target model
 - unknown camera parameters
- Proof of the local stability:
 - robustness to camera calibration errors
 - larger stability domain with path planning
- Extension of teaching-by-showing approach:
 - different cameras for learning and servoing
 - the camera zoom during servoing
Standard Visual Servoing

- **Model-based visual servoing:**

- **Model-free visual servoing:**
Teaching-by-showing

- Reference image with K
- Extract n reference points p
Teaching-by-showing

- Reference image with K
- Extract n reference points p
- Current image with K
- Camera positioned if $p = p$

EURON Summer School on Visual servoing
Teaching-by-showing

- Reference image with K
- Extract n reference points p
- Current image with K
- Camera positioned if $p = p$
- Not positioned if $K \neq K$
- Standard approaches cannot be used
Teaching-by-showing

- Reference image with K
- Extract n reference points p
- Current image with K
- Camera positioned if $p = p$
- Not positioned if $K \neq K$
- Standard approaches cannot be used
- How to build an error invariant to K?
Camera Model

\[p = K(t) m, \quad K = \begin{bmatrix} f(t) & f(t)s & u_0(t) \\ 0 & f(t)r & v_0(t) \\ 0 & 0 & 1 \end{bmatrix} \]
Invariance: points
Invariance: lines
Invariance with respect to K (I)

Compute the following symmetric matrices:

$$S_p = \frac{1}{n} \sum_{i=1}^{n} p_i p_i^\top \quad \text{and} \quad S_m = \frac{1}{n} \sum_{i=1}^{n} m_i m_i^\top$$

Since $p = K m$ the two matrices are related by:

$$S_p = K \left(\frac{1}{n} \sum_{i=1}^{n} m_i m_i^\top \right) K^\top = K S_m K^\top$$

Cholesky decomposition of the positive matrices:

$$S_p = T_p T_p^\top \quad \text{and} \quad S_m = T_m T_m^\top$$
The two upper triangular matrices are related by:

\[T_p = K \, T_m \]

Compute a point in the invariant space:

\[q = T_p^{-1} p = T_m^{-1} K^{-1} K \, m = T_m^{-1} m \]
The two upper triangular matrices are related by:

\[T_p = K \ T_m \]

Compute a point in the invariant space:

\[q = T_p^{-1} p = T_m^{-1} \ K^{-1} K m = T_m^{-1} m \]
Invariance with respect to K (II)

- The two upper triangular matrices are related by:

$$T_p = K T_m$$

- Compute a point in the invariant space:

$$q = T_p^{-1} p = T_m^{-1} K^{-1} K m = T_m^{-1} m$$
Compute the following symmetric matrices:

\[S_p = \frac{1}{n} \sum_{i=1}^{n} p_i p_i^\top \quad \text{and} \quad S_m = \frac{1}{n} \sum_{i=1}^{n} m_i m_i^\top \]

Since \(p = K m \) the two matrices are related by:

\[S_p = K \left(\frac{1}{n} \sum_{i=1}^{n} m_i m_i^\top \right) K^\top = K S_m K^\top \]

Cholesky decomposition of the positive matrices:

\[S_p = T_p \ T_p^\top \quad \text{and} \quad S_m = T_m \ T_m^\top \]
Invariance with respect to K (II)

The two upper triangular matrices are related by:

$$T_p = K T_m$$

Compute a point in the invariant space:

$$q = T_p^{-1} p = T_m^{-1} K^{-1} K m = T_m^{-1} m$$
The two upper triangular matrices are related by:

\[T_p = K \cdot T_m \]

Compute a point in the invariant space:

\[q = T_p^{-1} p = T_m^{-1} K^{-1} K m = T_m^{-1} m \]
The two upper triangular matrices are related by:

\[T_p = K T_m \]

Compute a point in the invariant space:

\[q = T_p^{-1} p = T_m^{-1} K^{-1} K m = T_m^{-1} m \]
Invariant Visual Servoing

Unified visual servoing approach: \(q = T_p^{-1} p \rightarrow q \)

- Model-based: given \(m = \begin{bmatrix} R & t \end{bmatrix} X \) compute
 \[q = T_m^{-1} m \]

- Model-free: given \(p \) compute
 \[q = T_p^{-1} p \]
The interaction matrix

Starting from $q_i = T_p^{-1}p_i = T_m^{-1}m_i$ the derivative of q_i is:

$$\dot{q}_i = \dot{T}_m^{-1}m_i + T_m^{-1}\dot{m}_i$$

Knowing that $\dot{T}_m^{-1} = -T_m^{-1}\dot{T}_m T_m^{-1}$, the derivative becomes:

$$\dot{q}_i = T_m^{-1}(m_i - \dot{T}_m q_i)$$

Finally, since $m_i = L_m v$ and $\dot{T}_m q_i = M_i v$:

$$\dot{q} = T_m^{-1}(L_{im} - M_i)v$$

and the interaction matrix is:

$$L_{iq} = T_m^{-1}(L_{im} - M_i)$$
Control Law

- Define the vector $s = (q_1, q_2, ..., q_n)$
- Compute the interaction matrix ($s = L_q v$):

$$L_q = \begin{bmatrix} \Phi(Z) & \Psi \end{bmatrix} \begin{bmatrix} F_1(K) & 0 \\ 0 & F_2(K) \end{bmatrix}$$

- Using the epipolar geometry: $\hat{Z} = \kappa(t)Z$, with $\kappa(t) > 0$
- Define the task function: $e = \hat{L}_q^+(s - s(t))$

$$\hat{L}_q = \begin{bmatrix} \Phi(\hat{Z}) & \Psi \end{bmatrix} \begin{bmatrix} F_1(\hat{K}) & 0 \\ 0 & F_2(\hat{K}) \end{bmatrix}$$

- The control law for imposing $\dot{e} = -\lambda e$ is: $v = -\lambda e + \hat{L}_q^+ \frac{\partial s(t)}{\partial t}$
Stability Analysis

Closed-loop equation during the path tracking:

\[\dot{e} = -\lambda A(t) \varepsilon + b(t) \]

where:

\[A(t) = \left. \hat{L}_q^+ L_q \right|_{s=s(t)} = \begin{bmatrix} \kappa(t) F_1^{-1}(\hat{K}) F_1(K) & 0 \\ 0 & F_2^{-1}(\hat{K}) F_2(K) \end{bmatrix} \]

\[b(t) = \left. (\hat{L}_q^+ L_q - I) \hat{L}_q^+ \right|_{s=s(t)} \frac{\partial s(t)}{\partial t} \]

- The system is locally stable if and only if \(\kappa(t) > 0, \hat{f} > 0 \).
- The tracking error is bounded if \(\hat{K}^{-1} K(t) > 0 \) and \(b(t) \) is bounded.
Experimental Results (I)

Learning with $f = 12\text{mm}$, servoing with $f = 6\text{mm}$

Reference image

Trajectory

Control law ν

Translation

Initial image

Error $\|q - q\|$

Control law ω

Rotation

EURON Summer School on Visual servoing
Experimental Results (II)

Learning with $f = 12mm$, servoing with $f = 6mm$

Reference image
Trajectory
Control law ν
Translation

Initial image
Error $\|q - q\|$
Control law ω
Rotation

EURON Summer School on Visual servoing
Experimental Results (III)

Zooming camera and non-planar object

Reference image

Focal length

Control law ν

Translation

Initial image

Error $\|q - q\|$}

Control law ω

Rotation

EURON Summer School on Visual servoing
Experimental Results (III)

Zooming camera and non-planar object

Reference image

Final image

Control law ν

Translation

Initial image

Error $\|q - q\|$

Control law ω

Rotation
Problems with planar objects

The same invariants are obtained from different positions:

$$\exists m_i \neq m_i : q_i = q_i \quad \forall i$$

Indeed, since the points are on a plane $$\exists G$$:

$$p_i = G p_i$$

Thus, if $$G$$ is an upper triangular matrix:

$$p_i = K m_i \Rightarrow q_i = f_i(m_1, m_2, \ldots, m_n)$$

$$p_i = G K m_i \Rightarrow q_i = f_i(m_1, m_2, \ldots, m_n)$$
Solution

At the convergence we need $p = p$:

- principal task: $q \rightarrow q$
- secondary task: $T_p \rightarrow T_p$

The algorithm works in both cases:

- if the object is not planar:
 - the principal task solve the problem
 - the secondary task can be any
- if the object is not planar:
 - the principal task is not enough
 - the secondary task helps solving the problem
Experimental Results (IV)

Zooming camera and planar object

Reference image

Initial image

Focal length

Error $\|q - q^*\|$
Control law ν

Control law ω

Translation

Rotation

EURON Summer School on Visual servoing
Experimental Results (IV)

Zooming camera and planar object

Reference image
Final image
Control law ν
Translation

Initial image
Error $\|q - \hat{q}\|$
Control law ω
Rotation

EURON Summer School on Visual servoing
Experimental Results (V)

Zooming camera and non-planar object

Reference image

Initial image

Error $||q - q||$

Control law ν

Control law ω

Rotation

Focal length

Translation

EURON Summer School on Visual servoing
Experimental Results (V)

Zooming camera and non-planar object

Reference image

Final image

Control law ν

Translation

Initial image

Error $\|q - q\|$

Control law ω

Rotation

EURON Summer School on Visual servoing
Conclusion

- New uncalibrated visual servoing approach;
- Extension of teaching-by-showing approach;
- The visual servoing is:
 - locally stable
 - robust to calibration errors
- Path tracking despite camera is uncalibrated:
 - larger stability domain
 - bounded tracking error